
J Comb Optim (2011) 21: 159–191
DOI 10.1007/s10878-009-9221-1

Efficient algorithms for supergraph query processing
on graph databases

Shuo Zhang · Xiaofeng Gao · Weili Wu ·
Jianzhong Li · Hong Gao

Published online: 17 March 2009
© Springer Science+Business Media, LLC 2009

Abstract We study the problem of processing supergraph queries on graph data-
bases. A graph database D is a large set of graphs. A supergraph query q on D is to
retrieve all the graphs in D such that q is a supergraph of them. The large number
of graphs in databases and the NP-completeness of subgraph isomorphism testing
make it challenging to efficiently processing supergraph queries. In this paper, a new
approach to processing supergraph queries is proposed. Specifically, a method for
compactly organizing graph databases is first presented. Common subgraphs of the
graphs in a database are stored only once in the compact organization of the data-
base, in order to reduce the overall cost of subgraph isomorphism testings from the
stored graphs to queries during query processing. Then, an exact algorithm and an ap-
proximate algorithm for generating the significant feature set with optimal order are
proposed, followed by the algorithms for indices construction on graph databases.
The optimal order on the feature set is to reduce the number of subgraph isomor-
phism testings during query processing. Based on the compact organization of graph
databases, a novel algorithm for testing subgraph isomorphisms from multiple graphs
to one graph is presented. Finally, based on all the above techniques, a query process-
ing method is proposed. Analytical and experimental results show that the proposed
algorithms outperform the existing similar algorithms by one to two orders of mag-
nitude.

Keywords Graph database · Supergraph query · Query processing · Graph indexing

S. Zhang · J. Li (�) · H. Gao
Harbin Institute of Technology, Harbin, China
e-mail: lijzh@hit.edu.cn

X. Gao · W. Wu
University of Texas at Dallas, Dallas, USA

mailto:lijzh@hit.edu.cn

160 J Comb Optim (2011) 21: 159–191

1 Introduction

Recently, large amount of data modeled by graphs, such as molecular structures of
compounds in chemistry (Willett et al. 1998; Agrafiotis et al. 2007), organizations of
entities in images (Petrakis and Faloutsos 1997; Burge and Kropatsch 1999), topolo-
gies of sensor networks (Li et al. 2003), objects in technical drawings in mechanical
engineering field (Cordella et al. 2000) and social networks (Cai et al. 2005), have
been collected in various domains. One of the most essential problems for managing
large amount of graphs or graph databases is how to efficiently process graph queries.

There are two kinds of queries on graph databases that are often used in appli-
cations. One kind of queries is the subgraph query. Given a graph database D and
a subgraph query Q with query graph q , the answer to Q is the set of {g | g ∈ D

and q is a subgraph of g}. The crucial part of the algorithms for processing sub-
graph queries is the subgraph isomorphism testing that is NP-complete. Thus, it is
intractable to process subgraph queries. Subgraph query processing has attracted
much research attention in last several years, and many algorithms have been pro-
posed (Shasha et al. 2002; Yan et al. 2005; He and Singh 2006; Zhang et al. 2007;
Williams et al. 2007; Jiang et al. 2007; Cheng et al. 2007; Zhao et al. 2007;
Zou et al. 2008; Shang et al. 2008). To accelerate the processing of subgraph queries,
most of the existing algorithms adopt a filtering-and-verification methodology, which
first obtains a candidate answer set by pre-generated features from the given graph
database and then verifies each candidate by subgraph isomorphism testing.

The other kind of queries on graph databases is the supergraph query. Given a
graph database D and a supergraph query Q with query graph q , the answer to Q is
the set of {g | g ∈ D and q is a supergraph of g}. This kind of queries is important
in many applications. For example, a chemical descriptor has specific properties in
chemical reactions. It involves a substructure of many molecular structures and could
be modeled by a graph with vertices representing atoms and edges representing bonds
between atoms. Chemists often want to find descriptors in a new molecule graph to
predict possible properties of the new molecule. In this case, the chemists can issue
a supergraph query with a new molecule as the query graph on the graph database of
descriptors to solve their problem.

Though the supergraph query is important in practice, and the filtering-and-
verification methodology (Shasha et al. 2002) has shown to be efficient for subgraph
query processing on large graph databases, adopting this methodology to process su-
pergraph queries has not been extensively considered yet. To the best of our knowl-
edge, there is only one algorithm, named cIndex (Chen et al. 2007), to date in the
literature for processing the supergraph query by adopting this methodology. cIn-
dex constructs an index on the features, which are subgraphs extracted from graph
databases and occurring rarely in historical query graphs. During query processing,
cIndex avoids a large number of subgraph isomorphism testings by using the filtering-
and-verification methodology based on the feature index. In addition, the size of the
feature index constructed by cIndex is very small since the features in the index are
filtered by the historical queries in query logs while they are extracted from graph
databases.

However, the effectiveness of the feature index constructed by cIndex depends on
the historical queries in query logs. The query logs may frequently change over time

J Comb Optim (2011) 21: 159–191 161

so that the feature index may be outdated quite often. The mechanism for monitoring
and updating feature index involves a large amount of subgraph isomorphism testings.
Thus, the overall performance of cIndex is degraded greatly.

To efficiently process supergraph queries, this paper investigates supergraph query
processing from a new perspective. The proposed new method in this paper involves
the compact storing of graph databases, the constructing of feature indices, and query
processing technique rather than only the feature index is considered. In the pro-
posed method, graph databases are stored compactly beyond the flat manner, i.e. the
graphs in graph databases are arranged one by one, to improve the efficiency of query
processing. To accelerate the construction of feature indices, a fast algorithm for ex-
tracting features from graph databases is proposed without taking query logs into con-
sideration. In order to further improve the efficiency of query processing, an optimal
order on the feature set is added to the feature indices. To improve the performance of
the crucial part of supergraph query processing greatly, a new algorithm for subgraph
isomorphism testing from multiple graphs to one graph is proposed.

To examine the performance of the proposed method, mathematical analysis and
extensive experiments were carried out in the paper, which show that the proposed
method outperforms cIndex by one to two orders of magnitude.

The main contributions of this paper are as follows.

(1) A method for compactly storing graph databases is proposed. Common sub-
graphs of the graphs in a database are stored only once in the compact orga-
nization of the database, named GPTree, in order to reduce the overall cost of
subgraph isomorphism testings from the stored graphs to queries during query
processing. To construct GPTree from graph databases, after the problem of op-
timal induced subgraph selecting is proved to be NP-hard, an approximation al-
gorithm with ratio bound 2 is proposed.

(2) An exact algorithm and an approximate algorithm for extracting significant fea-
tures from graph databases are proposed. The extracted features are used to con-
struct the feature indices on graph databases. To reduce the number of subgraph
isomorphism testings during query processing, an optimal order on the feature
set is determined by mathematics and added to the feature indices. The index
structures of CRGraph and FGPForest are devised for accommodating features
and the order on the feature set so as to accelerate query processing.

(3) To improve the performance of the crucial part of supergraph query processing
greatly, a new algorithm for subgraph isomorphism testing from multiple graphs
to one graph is proposed, named GPTreeTest, based on GPTree.

The rest of the paper is organized as follows. Section 2 reviews some preliminary
concepts and presents the problem definition. Section 3 presents the proposed query
processing method including the compact method for storing graph databases, the
feature extracting and ordering algorithms, the index structures and their construction
algorithms, the subgraph isomorphism testing algorithm from multiple graphs to one
graph, and the integrated query processing method. Experimental evaluation is given
in Sect. 4. The related work is surveyed in Sect. 5. Section 6 concludes the paper.

162 J Comb Optim (2011) 21: 159–191

2 Subgraph isomorphism and supergraph query

The paper focuses on the undirected, labeled and connected simple graphs, simply
called graph in the rest of the paper. The algorithms proposed in the paper can be
easily extended to other kinds of graphs.

Definition 1 (Graph) A graph g is defined as a 4-tuple (V ,E,Σ, l), where V is the
non-empty set of vertices, E ∈ V × V is the set of edges, Σ is the set of labels and
l : V ∪ E → Σ is a labeling function assigning a label to a vertex or an edge. The
size of a graph g is defined as size(g) = |Eg|, where Eg denotes the edge set E of g

and |Eg| is the size of the set Eg .

Definition 2 (Subgraph isomorphism) Let g = (V ,E,Σ, l) and g′ = (V ′,E′,Σ ′, l′)
be two graphs. A subgraph isomorphism from g to g′ is an injective function f : V →
V ′ such that (1) ∀u ∈ V , l(u) = l′(f (u)), and (2) ∀(u, v) ∈ E, (f (u), f (v)) ∈ E′ and
l(u, v)1 = l′(f (u), f (v)).

Definition 3 (Induced subgraph isomorphism) Let g = (V ,E,Σ, l) and g′ =
(V ′,E′,Σ ′, l′) be two graphs. An induced subgraph isomorphism from g to g′
is an injective function f I : V → V ′ such that (1) ∀u ∈ V , l(u) = l′(f I (u)), (2)
∀(u, v) ∈ E, (f I (u), f I (v)) ∈ E′ and l(u, v) = l′(f I (u), f I (v)), and (3) ∀u,v ∈ V ,
if (u, v) /∈ E then (f I (u), f I (v)) /∈ E′.

If there exists a subgraph isomorphism from g to g′, g is called a subgraph of g′,
denoted by g � g′, g′ is called a supergraph of g, and g′ contains g. If g � g̃ and
size(g) + 1 = size(g̃), g̃ is called a direct supergraph of g. If g � g′ and g �= g′,
g′ is called a proper supergraph of g. Similarly, if there exists an induced subgraph
isomorphism from g to g′, g is called an induced subgraph of g′, denoted by g �I g′,
g′ is called an induced supergraph of g, and g′ induced-contains g. Hereinafter, we
use the term sub-iso to express subgraph isomorphism.

Given a graph database D = {g1, g2, . . . , gn} and a graph g, the support set of g

in D, denoted by supD(g), is the set of all the graphs in D that are supergraphs of g,
i.e. supD(g) = {gi | g � gi, gi ∈ D}. σD(g) = |supD(g)|/|D| is called the support
of g in D. Similarly, the induced-support set of g in D, denoted by supI

D(g), is the
set of all the graphs in D that are induced supergraphs of g. σ I

D(g) = |supI
D(g)|/|D|

is called the induced-support of g in D . For a user-specified minimum support (or
induced-support) σ , 0 ≤ σ ≤ 1, a graph g is called frequent (or induced frequent) in
D if σD(g) ≥ σ (or σ I

D(g) ≥ σ).
The supergraph query processing problem can be defined as follows.
Input: a graph database D = {g1, g2, . . . , gn} and a query graph q .
Output: Answer(q) = {gi | gi � q,gi ∈ D}.

1l((u, v)) is denoted by l(u, v) for ease of presentation, similarly hereinafter.

J Comb Optim (2011) 21: 159–191 163

3 Supergraph query processing

3.1 Overview of query processing method

The proposed method for processing supergraph queries consists of the following
three parts.

Part 1. Graph database organizing. Organize the given graph database com-
pactly, i.e. construct a GPTree of the graph database.

Part 2. Index creating. First, features are extracted from the graph database.
Then, an order on the feature set is determined based on the containment relation-
ship between the support sets of the features. Finally, two feature indices on the given
graph database, named CRGraph and FGPForest, are created based on the algorithm
for GPTree construction.

Part 3. Query processing. First, the candidate answer set for a given query with
query graph q is generated using the indices of CRGraph and FGPForest. Then, all
candidates (or graphs) in the candidate answer set are verified by testing the subgraph
isomorphisms from all the candidates to q using the GPTree of the graph database
and the GPTreeTest algorithm, i.e. the algorithm for testing subgraph isomorphisms
from multiple graphs to one graph, and finally the query answer is obtained.

The time cost of Part 3, i.e. query processing, is Tquery = Tfiltering + Tverification,
where Tfiltering is the time cost of computing a candidate set by testing sub-iso from
features to q , and Tverification is the time cost of verifying all candidates by testing
sub-iso from candidate graphs to q . The preprocessing of the given graph database,
i.e. both Part 1 and Part 2, aim at reducing the query processing cost Tquery, i.e. both
Tfiltering and Tverification.

The details of Part 1, Part 2, and Part 3 are presented in Sects. 3.2, 3.3 and 3.4,
respectively.

3.2 GPTree of a graph database

The idea of the proposed compact organization of a graph database is to store all the
graphs in the database into one graph with the common subgraphs of the graphs in the
database being stored only once. Figure 1 shows a sample graph database consisting
of the graphs g1, g2, g3 and g4, where A,B,C represent three distinct labels of
vertices, and the labels of edges are ignored for simplicity. Figure 2 illustrates the
intuitive idea of the compact organization of the graph database in Fig. 1. In Fig. 2
the triangle in bold solid lines is a common subgraph of g1 and g2, and the five-edge
subgraph in solid lines is a common subgraph of g3 and g4.

Figure 2 only shows the intuitive idea of the compact organization of a graph
database. Actually, we propose a data structure, named GPTree, to implement the

Fig. 1 Running example:
a graph database

164 J Comb Optim (2011) 21: 159–191

Fig. 2 Intuitive idea of a
compact organization

idea. In the following, the structure of GPTree and the algorithm for constructing
GPTree are presented.

3.2.1 Structure of GPTree

To construct a GPTree of a graph database, all the graphs in the database need be
encoded by an encoding method. This subsection presents a new graph encoding,
named GVCode.

Definition 4 (GVCode) Given a graph g = (V ,E,Σ, l) and a total order ≺V on V ,
a GVCode of g, denoted by GV Code(g), is a sequence 〈α1, α2, . . . , α|V |〉 that is
defined as follows.
For 1 ≤ j ≤ |V |, vj ∈ V ,

(1) αj is a variable-length subsequence, named the code of vj , whose length is |αj | =
|{(vi, vj) | i < j and (vi, vj) ∈ E}| + 1,

(2) the first element in αj is a two-tuple (j, l(vj)), and the other elements are distinct
triplets (i, l(vi), l(vi, vj)), where i < j and (vi, vj) ∈ E, and

(3) for ∀τ = (i, l(vi), l(vi, vj)) and ∀τ ′ = (i′, l(vi′), l(vi′ , vj)) in αj , τ is before τ ′
if and only if i < i′.

Example 1 (GVCode) Figure 3 shows the GVCodes of the four graphs in Fig. 1. Take
the third code α3 = 〈(3,A), (1,A,−), (2,A,−)〉 in the GVCode of g1 as example.
The first element (3,A) in α3 represents the vertex v3 labeled with A in g1. The
elements (1,A,−) and (2,A,−) represent the edges (v1, v3) and (v2, v3), and show
that both the labels of v1 and v2 are A. The ignoring of the labels on (v1, v3) and
(v2, v3) is denoted by ‘−’. (1,A,−) is before (2,A,−) since the condition (3) in
Definition 4 holds.

Please note that a graph may have multiple GVCodes due to the variety of total
orders on the vertex set of the graph.

It follows that a prefix of a GVCode of a graph corresponds to an induced subgraph
of the graph, and a common prefix of GVCodes of multiple graphs corresponds to a
common induced subgraph of these graphs.

GPTree A GPTree of a graph database is a trie constructed by the GVCodes of
all the graphs in the database, with taking a code in a GVCode as a basic unit of
the sequence. For example, Fig. 4 shows a sample GPTree constructed by the graph
database in Fig. 1, where for 1 ≤ i ≤ 11 ni is defined in Fig. 4b. In the GPTree, the

J Comb Optim (2011) 21: 159–191 165

Fig. 3 Four GVCodes

Fig. 4 A GPTree

path 〈n1, n2, n3, n4, n5〉2 corresponds to g1 (or the GVCode of g1 in Fig. 3), which
is indicated by the set of graph-IDs attached to the last vertex, n5, of the path. The
path 〈n1, n2, n3, n6〉 corresponds to g2 (or the GVCode of g2), indicated by the set
of graph-IDs attached to n6. The path 〈n1, n2, n3〉 represents a common prefix of the
GVCodes of g1 and g2 (or a common induced subgraph of g1 and g2).

Please note that a path from the root of a GPTree to any node of the GPTree may
represent multiple isomorphic graphs.

3.2.2 Algorithm for constructing GPTree

To construct a GPTree of a graph database, each graph in the database is encoded into
a GVCode. Because multiple GVCodes may be generated from a graph as mentioned
in Sect. 3.2.1, there may be multiple GPTrees that can be constructed from a database.
To identify a good GPTree for efficiently answering supergraph queries, the cost of
sub-iso testing from multiple graphs organized in a given GPTree to one graph is first
analyzed as follows.

Let us first consider the supergraph query with query graph q1 in Fig. 5 issued on
the graph database in Fig. 1. To process the query q1 using naive method, sub-iso
testings are performed one by one, i.e. test sub-iso from g1 to q1, g2 to q1, . . . , and g4
to q1 one by one. It need perform 4 sub-iso testings. To process q1 using the GPTree
in Fig. 4, the sub-iso testing from g1 to q1 is performed first. It will be found that
the triangle in bold solid lines in Fig. 2 is not a subgraph of q1, and thus g2 is not a
subgraph of q1 because the triangle is a subgraph of g2. Therefore, the sub-iso testing

2I.e. 〈nroot, n1, n2, n3, n4, n5〉. A path starting from the root of a GPTree is presented with the root re-
moved hereinafter, for ease of presentation.

166 J Comb Optim (2011) 21: 159–191

Fig. 5 Running example: two
queries

from g2 to q1 is avoided. Similarly, after the sub-iso testing from g3 to q1, it is known
that the five-edge subgraph in solid lines in Fig. 2 is not a subgraph of q1, and thus g4
is not a subgraph of q1 without sub-iso testing from g4 to q1. Thus, 2 sub-iso testings
are saved (or avoided) altogether compared to the naive method.

Then let us consider the supergraph query with query graph q2 in Fig. 5, which is
issued on the graph database in Fig. 1. Similar to the results of q1, the naive method
need perform 4 sub-iso testings to process q2. When processing q2 using the GPTree
in Fig. 4, a subgraph isomorphism from the triangle in bold solid lines in Fig. 2 to
q2 is found. Then, the subgraph isomorphisms from g1 and g2 to q2 can be found by
extending the sub-iso from the triangle to q2, respectively. In this way, the sub-iso
testing from the triangle to q2 is just performed once rather than twice as the naive
method does. Similarly, the sub-iso testing from the five-edge subgraph in solid lines
in Fig. 2 to q2 is just performed once. Thus, 2 sub-iso testings are saved compared to
the naive method.

In general, let the GVCodes of all the graphs in a graph set GS share a common
prefix, cp, in a GPTree of GS. Then, the cost of sub-iso testings saved by the common
prefix cp in the GPTree is

c(len(cp)) × (|GS| − 1), (1)

where len(cp) is the number of the codes in cp, c : N → R
+ is a monotonic increasing

function and the value of c(n) is the average cost taken by one sub-iso testing from
a subgraph with n vertices to a query graph. Please note that the number of vertices
has crucial impact on the cost of sub-iso testing.

In the following discussion, D = {g1, g2, . . . , gn} is a graph database, and Q is a
supergraph query with query graph q .

Given a GPTree of D, let us consider the cost of sub-iso testings saved by a set of
common prefixes in the GPTree during the processing of Q. Let the GVCodes of the
distinct graphs g11, g12, . . . , g1n1 in D share the common prefix cp1 in the GPTree,
the GVCodes of the distinct graphs g21, g22, . . . , g2n2 in D share the common prefix
cp2,, and the GVCodes of the distinct graphs gk1, gk2, . . . , gknk

in D share the
common prefix cpk in the GPTree. Here

∑k
j=1 nj = |D|. Based on (1), for 1 ≤ j ≤ k

the cost saving by the common prefix cpj is c(len(cpj)) × (nj − 1). Therefore, the
overall cost saving, denoted by Csav, of sub-iso testings during the processing of
Q using the GPTree, by the common prefixes cpj for 1 ≤ j ≤ k, is no less than
∑k

j=1 c(len(cpj)) × (nj − 1).
Based on the above analysis, because a GPTree of D is constructed by the GV-

Codes of all the graphs in D and each graph in D may have multiple GVCodes, an
optimal GPTree should be constructed by selecting a best GVCode for each graph in

J Comb Optim (2011) 21: 159–191 167

D such that the overall cost saving Csav is maximized, in order to efficiently answer
supergraph queries.

A prefix of a GVCode of a graph corresponds to an induced subgraph of the
graph as mentioned in Sect. 3.2.1. Conversely, given an induced subgraph of a
graph, it can be used to generate a prefix of a GVCode of the graph. Thus, to get
a GVCode of a graph g = (V ,E,Σ, l), we can first select an induced subgraph
ig = (Vig,Eig,Σig, lig) of g, then generate the GVCode of ig, and finally extend
the GVCode of ig based on an induced subgraph isomorphism from ig to g, to ob-
tain the GVCode of g by adding the codes of the vertices in V − Vig .

Thus, to solve the problem of constructing GPTree for efficiently answering su-
pergraph queries, the following steps are performed.

Step 1. Select the optimal induced subgraph for each graph in D.
Step 2. Generate the GVCodes of all the graphs in D using the induced subgraphs

obtained in Step 1.
Step 3. Construct the GPTree of D by the GVCodes generated in Step 2.

Despite the lack of information about induced-containment relationship among all
induced subgraphs of the graphs in a database, which is too expensive to be obtained,
we focus our attention on selecting the best induced subgraph for each graph in the
database such that

∑k
j=1 c(|Vcigj

|) × (nj − 1) is maximized, where for 1 ≤ j ≤ k,
cigj is the common induced subgraph selected for the distinct graphs gj1, gj2, . . . ,
gjnj

in D, and
∑k

j=1 nj = |D|. This problem is called induced subgraph selecting
problem in the paper, defined as follows.

Input: a graph database D = {g1, g2, . . . , gn}.
Output: a sequence 〈ig1, ig2, . . . , ig|D|〉, where for 1 ≤ i ≤ |D|, igi �I gi , i.e.,

igi is the induced subgraph selected for the graph gi in D.
Objective: maximize

|D|∑

i=1

c(|Vigi
|) −

∑

ig∈⋃
1≤i≤|D|{igi}

c(|Vig|).

Please note that
∑k

j=1 c(|Vcigj
|) × (nj − 1) =

|D|∑

i=1

c(|Vigi
|) −

∑

ig∈⋃
1≤i≤|D|{igi}

c(|Vig|).

In the following discussion, IG is the set of all the induced subgraphs of the graphs
in D.

Let S be a finite set, f : S → R
+ be a positive function, and C be a collection of

subsets of S. We create a bijection between S and IG, a bijection between C and D,
and a bijection between f (e) and the cost function c(|Vig|) in (1), where ig ∈ IG and
Vig is the vertex set of ig. If e corresponds to ig under the bijection between S and
IG, then f (e) = c(|Vig|). If a subset Si = {e′

1, e
′
2, . . . , e

′
l} in C corresponds to a graph

gi in D, then gi is an induced supergraph of ig′
1, ig

′
2, . . . , ig

′
l (all in IG) but none of

other graphs in IG, where ig′
1, ig

′
2, . . . , ig

′
l correspond to e′

1, e
′
2, . . . , e

′
l , respectively.

168 J Comb Optim (2011) 21: 159–191

|C| = |D|. Under these bijections, finding a sequence 〈ig1, ig2, . . . , ig|D|〉 is to find a
sequence 〈e1, e2, . . . , e|C|〉, where for 1 ≤ i ≤ |C|, ei is an element of the subset Si in
C , ei corresponds to igi , and

|C|∑

i=1

f (ei) −
∑

e∈⋃
1≤i≤|C|{ei }

f (e) =
|D|∑

i=1

c(|Vigi
|) −

∑

ig∈⋃
1≤i≤|D|{igi }

c(|Vig|).

Thus, the induced subgraph selecting problem can be defined as follows.
Input: a finite set S, a positive cost function f : S → R

+ and a collection C of
subsets of S.

Output: a sequence 〈e1, e2, . . . , e|C|〉, where ei is an element of the subset Si in C
for 1 ≤ i ≤ |C|.

Objective: maximize

|C|∑

i=1

f (ei) −
∑

e∈⋃
1≤i≤|C|{ei }

f (e).

To prove that the induced subgraph selecting problem is NP-hard, we first define
the uniquely hitting set problem as follows.

Input: a collection C of subsets of a finite set S and a positive integer K ≤ |S|.
Output: if there is a sequence 〈e1, e2, . . . , e|C|〉 such that |⋃|C|

i=1{ei}| ≤ K then
output ‘true’, otherwise output ‘false’, where for 1 ≤ i ≤ |C|, ei is an element of the
subset Si in C .

Lemma 1 The uniquely hitting set problem is NP-complete.

Proof It is easy to prove that the uniquely hitting set problem is NP. Because a non-
deterministic algorithm need only guess a sequence of elements 〈e1, e2, . . . , e|C|〉,
where for 1 ≤ i ≤ |C|, ei is an element of the subset Si in C , and check in polynomial
time whether |⋃|C|

i=1{ei}| ≤ K or not.
The hitting set problem is NP-complete (Garey and Johnson 1979), which can be

reduced to the uniquely hitting set problem in polynomial time as follows. Given any
instance of the hitting set problem, i.e. a collection C = {S1, S2, . . . , S|C|} of subsets
of a ground set S and a positive integer K ≤ |S|, we define an instance of the uniquely
hitting set problem by the same instance unchangeably. Apparently, the construction
of the new (defined) instance takes polynomial time. Then we claim that there exists
a satisfied sequence of elements for the uniquely hitting set problem if and only if
there exists a satisfied subset of S for the hitting set problem. The reason is explained
as follows. For necessity, if there is a sequence of elements 〈e1, e2, . . . , e|C|〉 such that

|⋃|C|
i=1{ei}| ≤ K , where for 1 ≤ i ≤ |C|, ei is an element of the subset Si in C , then

we have that for each subset in C , the set
⋃|C|

i=1{ei} contains at least one element of
the subset. For sufficiency, suppose there exists a subset S′ ⊆ S such that |S′| ≤ K

and for each subset in C , S′ contains at least one element of the subset. For each
subset in C , we arbitrarily select one element from the intersection of S′ and the

J Comb Optim (2011) 21: 159–191 169

subset; and then we construct a sequence of elements 〈e′
1, e

′
2, . . . , e

′
|C|〉. Please note

that the intersection of S′ and any subset in C cannot be the empty set. It follows that
|⋃|C|

i=1{e′
i}| ≤ |S′|, and thus, |⋃|C|

i=1{e′
i}| ≤ K . �

Theorem 1 The induced subgraph selecting problem is NP-hard.

Proof The uniquely hitting set problem is a special case of the induced subgraph
selecting problem (the value of the function f is equivalent to 1). Thus, the induced
subgraph selecting problem is NP-hard. �

Since the induced subgraph selecting problem is NP-hard, we develop an approx-
imation algorithm with ratio bound 2 as follows to solve the problem. In the approx-
imation algorithm, the element selected from a subset Si in C is called the uniquely
hitting element of Si , denoted by uhe(Si). The data structure A is used to store all the
subsets that have already been selected and need not be considered subsequently. Let
H(e, Z) = {Si | e ∈ Si, Si ∈ Z}, where e ∈ S and Z ⊆ C . The proposed algorithm is
as follows.

Input: a finite set S, a positive cost function f : S → R
+ and a collection C of

subsets of S.
Output: the sequence 〈uhe(S1),uhe(S2), . . . ,uhe(S|C|)〉, where Si ∈ C for

1 ≤ i ≤ |C|.
A ← ∅ ;1

while ∃e ∈ S such that |H(e, C − A)| > 1 do2

select e′ ∈ S with largest f (e′) such that |H(e′, C − A)| > 1 ;3

for each Si ∈ H(e′, C − A) do4

uhe(Si) ← e′ ;5

A ← A ∪ H(e′, C − A) ;6

while ∃e ∈ S such that |H(e, C − A)| = 1 do7

select e′′ ∈ S with largest f (e′′) such that |H(e′′, C − A)| = 1 ;8

for each Si ∈ H(e′′, C − A) do9

uhe(Si) ← e′′ ;10

A ← A ∪ H(e′′, C − A) ;11

Theorem 2 The above algorithm can approximate the optimal selecting with ratio
bound 2.

Proof The objective
∑|C|

i=1 f (ei) − ∑
e∈⋃

1≤i≤|C|{ei } f (e) can be regarded as the sum

of the contribution values from each subset Si in C for 1 ≤ i ≤ |C|. Si ’s contribution
to the objective is equal to either f (uhe(Si)) or 0, which depends on the distribution
of uhe(Si) for 1 ≤ i ≤ |C|.

170 J Comb Optim (2011) 21: 159–191

During the course of the algorithm, if the first element being selected is produced
in Line 8 (not in Line 3), then for 1 ≤ i ≤ |C|, H(ei , C) = 1. Thus, the algorithm
outputs a solution with the objective 0, and the upper bound for the sum of the con-
tribution values from all the subsets in C for all solutions (or for the optimal solution)
is 0. So in this case, the solution outputted by the algorithm is an optimal solution.

Otherwise, first, we consider all the iterations within Lines 2–6 in the above algo-
rithm. Let e′

1, e
′
2, . . . , e

′
p1

be the elements selected in turn in these iterations, where
p1 is the number of the elements selected here altogether.

During the course of the algorithm, let the first element being selected in Line 3
be e′

1. On the one hand, if all the subsets containing e′
1 (or in H(e′

1, C)) do not contain
an element with larger cost function value than f (e′

1), then the contribution value
from each of these subsets in H(e′

1, C) is no more than f (e′
1), and consequently for

all solutions (or for the optimal solution) the sum of the contribution values from
all the subsets in H(e′

1, C) must be no more than f (e′
1) × H(e′

1, C). On the other
hand, if some subsets in H(e′

1, C) contain elements, denoted by e′1
1 , e′2

1 , . . . , e′m
1 , with

larger cost function values, i.e. f (e′l
1) > f (e′

1) for 1 ≤ l ≤ m, then for 1 ≤ l ≤ m

the number of all the subsets in H(e′l
1 , C) is 1 due to the greedy selection strategy in

Lines 2–6. If a solution, denoted by sol′, contains some elements of them, denoted by
e
′r1
1 , e

′r2
1 , . . . , e

′rk
1 (for 1 ≤ l ≤ k,1 ≤ rl ≤ m), in the positions corresponding to their

related subsets, respectively, then for 1 ≤ l ≤ k, the subset in H(e
′rl
1 , C) contributes

f (e
′rl
1)× (|H(e

′rl
1 , C)|−1) = 0 to the objective. Then we can construct a new solution

sol from sol′ by replacing each of e
′r1
1 , e

′r2
1 , . . . , e

′rk
1 with e′

1, respectively. The new
constructed solution sol is no worse (the objective is no less) than the old solution
sol′ since the contribution values from e

′r1
1 , e

′r2
1 , . . . , e

′rk
1 (as well as those from other

subsets) do not decrease during the replacing. Therefore, we have that for the optimal
solution the sum of contribution values from all the subsets in H(e′

1, C) must be no
more than f (e′

1) × H(e′
1, C).

During the iterating within Lines 2–6, let the next element to be selected be e′
x .

Similar to the proof given in the above paragraph, on the one hand, if all the sub-
sets in H(e′

x, C − A) do not contain an element with larger cost function value than
f (e′

x), then for the optimal solution the sum of contribution values from all the sub-
sets in H(e′

x, C − A) is no more than f (e′
x) × H(e′

x, C − A). On the other hand, if
there exist some subsets in H(e′

x, C − A) such that they contain elements, denoted by
e′1
x , e′2

x , . . . , e
′μ
x with larger cost function values than f (e′

x), then for 1 ≤ l ≤ μ the
number of all the subsets in H(e′l

x , C − A) is 1. Without loss of generality, suppose e′l
x

is the element with the largest cost function value in the subset in H(e′l
x , C − A). For

a solution sol′ that contains e
′s1
x , e

′s2
x , . . . , e

′sκ
x (for 1 ≤ l ≤ κ,1 ≤ sl ≤ μ) in the posi-

tions corresponding to their related subsets in C − A, respectively, we claim that the
new solution sol constructed from sol′ by replacing each of e

′s1
x , e

′s2
x , . . . , e

′sκ
x in these

positions with e′
x , respectively, is no worse than the old solution sol′ before the re-

placing, which is proved as follows. For e
′sl
x (∀l,1 ≤ l ≤ κ), each subset in H(e

′sl
x , A)

must contain an element with larger cost function value than f (e
′sl
x) that has already

been selected by the greedy selection strategy, because if not then e
′sl
x will be selected

before e′
x by the greedy selection strategy and a contradiction is obtained. Conse-

quently, Subcase 1, for a solution that contains e
′sl
x in the positions corresponding to

some subsets in H(e
′sl
x , A), the sum of the contribution values from all the subsets in

J Comb Optim (2011) 21: 159–191 171

H(e
′sl
x , A) must be no more than the sum of the cost function values of the elements

selected by the greedy selection strategy for all the subsets in H(e
′sl
x , A) ; and the

contribution value from the subset in H(e
′sl
x , C − A) is 0. Subcase 2, for a solution

that does not contain e
′sl
x in the position corresponding to any subset in H(e

′sl
x , A),

the contribution value from the subset in H(e
′sl
x , C − A) is 0 apparently. Therefore,

the new solution sol constructed from sol′ by replacing each of e
′s1
x , e

′s2
x , . . . , e

′sκ
x in

the positions corresponding to the subsets in C − A with e′
x , respectively, is no worse

than sol′. In summary, it follows that for all solutions (or for the optimal solution)
the sum of the contribution values from all the subsets in H(e′

x, C − A) is no more
than f (e′

x) × H(e′
x, C − A) on the basis of the bound for the sum of the contribution

values from all the subsets that contain the previously selected elements (or in A).
Therefore, after performing all the iterations within Lines 2–6, we obtain the

partial solution produced by the greedy strategy, whose objective is equal to
∑p1

j=1 f (e′
j) × (|A′

j − A′
j−1| − 1), and an upper bound for the sum of the contribu-

tion values from all the subsets in A′
p1 for all solutions (or for the optimal solution),

which is
∑p1

j=1 f (e′
j)× (|A′

j − A′
j−1|), where for k ≥ 1, A′

k = ⋃k
j=1 H(e′

j , C) and
A′

0 = ∅.
Second, considering all the iterations within Lines 7–11 in the above algorithm,

let e′′
1, e′′

2 , . . . , e′′
p2

be the elements selected in turn in these iterations (there are p2

elements altogether). During the iterating, let the next element to be selected be e′′
x .

We have that the number of all the subsets in H(e′′
x, C − A′

p1) is 1, since if not then
e′′
x must be selected in the iterations within Lines 2–6. Also we have that e′′

x is the
element with the largest cost function value in the subset in H(e′′

x, C − A′
p1). Then,

similar to the proof for the iterations within Lines 2–6, each subset in H(e′′
x, A′

p1)

must contain an element with larger cost function value than f (e′′
x) that has al-

ready been selected by the greedy selection strategy within Lines 2–6. Consequently,
Subcase 1, for a solution that contains e′′

x in the positions corresponding to some
subsets in H(e′′

x, A′
p1), the sum of the contribution values from all the subsets in

H(e′′
x, A′

p1) must be no more than the sum of the cost function values of the ele-
ments selected by the greedy selection strategy within Lines 2–6 for all the subsets
in H(e′′

x, A′
p1); and the contribution value from the subset in H(e′′

x, C − A′
p1) is 0.

Subcase 2, for a solution that does not contain e′′
x in the position corresponding to

any subset in H(e′′
x, A′

p1), the contribution value from the subset in H(e′′
x, C − A′

p1)

is 0 apparently. In summary, it follows that on the basis of the bound for the sum
of the contribution values from all the subsets in A′

p1 given in the above paragraph,
i.e.

∑p1
j=1 f (e′

j) × (|A′
j − A′

j−1|), for the optimal solution the sum of the contri-
bution values from all the subsets in A′′

p2 (or C − A′
p1) is equivalent to 0, where

A′′
k = ⋃k

j=1 H(e′′
j , C − A′

p1). Obviously, the objective of the partial solution pro-
duced in the iterations within Lines 7–11 is equal to 0.

In summary, after all the iterations within Lines 2–11 in the above algorithm have
been conducted, a solution with the objective

∑p1
j=1 f (e′

j)× (|A′
j − A′

j−1|−1) and
an upper bound for the sum of the contribution values from all the subsets in C for all
solutions (or for the optimal solution), which is

∑p1
j=1 f (e′

j) × (|A′
j − A′

j−1|), are

172 J Comb Optim (2011) 21: 159–191

obtained. So the approximation ratio is

R = opt

solution
≤

∑p1
j=1 f (e′

j) × (|A′
j − A′

j−1|)
∑p1

j=1 f (e′
j) × (|A′

j − A′
j−1| − 1)

= 1 +
∑p1

j=1 f (e′
j)

∑p1
j=1 f (e′

j) × (|A′
j − A′

j−1| − 1)
.

It is clear that for ∀j (1 ≤ j ≤ p1), |A′
j − A′

j−1| ≥ 2 due to the greedy selection
strategy within Lines 2–6 in the above algorithm. So

R ≤ 1 +
∑p1

j=1 f (e′
j)

∑p1
j=1 f (e′

j) × (2 − 1)
≤ 2.

�

GPTree construction The algorithm for GPTree construction, called
BuildGPTree, is shown in Algorithm 1. After Lines 1, 3–12 are carried out, Step 1
for the construction finishes; after Line 13 ends, Step 2 and Step 3 finish.

Algorithm 1: BuildGPTree(D,σ I
T)

Input: a graph database D and a minimum threshold σ I
T

Output: the GPTree
obtain the set FIG of frequent induced subgraphs of the graphs in D, where the1

minimum induced-support is σ I
T ;

return ConsTrie(D, σ I
T , FIG) ;2

Function:ConsTrie(D, σ I
T , FIG)

CP ← ∅, S ← ∅ ;3

while ∃ig ∈ FIG s.t. |(supI
D(ig) ∩ D) − S| > 1 do4

select ig′ ∈ FIG with largest |Vig′ | s.t. |(supI
D(ig′) ∩ D) − S| > 1 ;5

cp ← ig′, cp.GRP ← {〈g, vseq〉 | 〈g, vseq〉 ∈ ig′.SUPI , g ∈ D − S} ;6

CP ← CP ∪ {cp}, S ← S ∪ (supI
D(ig′) ∩ D) ;7

while ∃ig ∈ FIG s.t. |(supI
D(ig) ∩ D) − S| = 1 do8

select ig′′ ∈ FIG with largest |Vig′′ | s.t. |(supI
D(ig′′) ∩ D) − S| = 1 ;9

cp ← ig′′, cp.GRP ← {〈g, vseq〉 | 〈g, vseq〉 ∈ ig′′.SUPI , g ∈ D − S} ;10

CP ← CP ∪ {cp}, S ← S ∪ (supI
D(ig′′) ∩ D) ;11

complete the sequence of all the vertices of each graph in D ;12

according to the sequence of all the vertices of each graph in cp.GRP, where13

cp ∈ CP, obtain the corresponding GVCode, then construct the trie of GPTree
and return the trie ;

BuildGPTree first obtains the set FIG of frequent induced subgraphs of the graphs
in D (Line 1). Please note that due to the exponential amount of all induced subgraphs
of the graphs in a database generally, we set a minimum induced-support threshold

J Comb Optim (2011) 21: 159–191 173

Fig. 6 Running example:
frequent induced subgraphs

and obtain frequent induced subgraphs instead. For each ig in FIG, during the min-
ing, an induced sub-iso, denoted by ϕ(ig, gj), from ig to each graph gj ∈ supI

D(ig)

is detected; and for each such gj , a sequence, denoted by vseqj , of the vertices of
gj involving ϕ(ig, gj) is retrieved. ig.SUPI = {〈gj , vseqj 〉 | gj ∈ supI

D(ig)} is re-
trieved for each ig in FIG. Then, BuildGPTree conducts induced subgraph select-
ing from FIG following the above greedy algorithm (Lines 3–11). After that, a pair
〈g, vseq〉 ∈ ⋃

cp∈CP cp.GRP represents that g takes vseq as the prefix of the sequence
of all the vertices of g. Then, BuildGPTree generates a sequence of the remaining ver-
tices of each graph in D and completes the sequence of all the vertices of the graph
(Line 12). After the order on the vertex set of each graph has been found, a GVCode
of each graph is obtained according to the order. The last step is to construct the trie
of GPTree.

Example 2 Figure 6 shows all the frequent induced subgraphs of the graphs in
the database in Fig. 1 with σ I

T = 0.5. The proposed algorithm for induced sub-
graph selecting selects f ig8 for g3 and g4, and f ig6 for g1 and g2. After the
induced subgraph selecting has been conducted (Lines 3–11 in Algorithm 1),
four pairs in

⋃
cp∈CP cp.GRP are produced, i.e. 〈g1, 〈v1, v2, v3〉〉, 〈g2, 〈v1, v2, v3〉〉,

〈g3, 〈v1, v2, v3, v4〉〉, 〈g4, 〈v1, v2, v3, v4〉〉. Then, after the sequence of all the vertices
of each graph has been completed, a GVCode of each graph is obtained according to
the sequence and the GPTree is constructed as shown in Fig. 4.

Complexity analysis of GPTree construction Let Tig-m and Sig-m be the time and
space usage by frequent induced subgraph mining. The time usage of BuildGPTree
apart from Tig-m is O

(|D| × |FIG| + ∑
g∈D(|Vg| + |Eg|)

)
. The memory usage apart

from Sig-m is O
(∑

ig∈FIG(|supI
D(ig)|× |Vig|)+|D|× |FIG|+∑

g∈D(|Vg|+ |Eg|)
)
.

Also, vseqs could be stored in disk for limited memory.

174 J Comb Optim (2011) 21: 159–191

3.3 Indices on graph databases

3.3.1 Feature generation

To reduce the cost of query processing, indices constituted by the features of a given
graph database are constructed. In this section, two methods are proposed for feature
generation. One is an exact method for selecting all significant frequent subgraphs,
and the other is an approximate method for faster selecting a subset of significant fre-
quent subgraphs, which has comparable filtering power, i.e. the number of candidates
after filtering, to that of all significant frequent subgraphs in practice.

Frequent subgraphs expose the intrinsic characteristics of a graph database and
have been verified to be good choices as features for subgraph queries. For supergraph
queries, the filtering power of each frequent subgraph is analyzed in the following.
It will be seen that a subset of all frequent subgraphs selected as features are able to
achieve the same filtering power compared to all of them. For two distinct frequent
subgraphs g and g′ such that g � g′, if |sup(g)| 3= |sup(g′)|, we claim that it is
advisable to select g′ as a feature rather than both of them or only g. The reason
is as follows. Given a graph database D, a feature set F of D, and a supergraph
query with query graph q , the candidate answer set is Cq = D−⋃

f ��q,f ∈F supD(f).
Therefore, if g′ �� q then all the graphs in supD(g′) can be removed from Cq , and no
matter whether g � q or not Cq cannot be refined further; otherwise, if g′ � q , then
g � q and both g′ and g cannot be used to refine Cq . Thus, if g′ is a feature, then
g need not be a feature with the guarantee of achieving the same filtering power. In
this way, g′ is called more helpful than g for filtering during query processing, and
g is not helpful w.r.t. g′. In the case of multiple subgraphs, for a subgraph g and a
set of subgraphs SG = {g1, g2, . . . , gk} such that for 1 ≤ i ≤ k, g � gi and g �= gi ,
if sup(g) = ⋃k

i=1 sup(gi), then g is not helpful w.r.t. SG. The reason is that if all
the subgraphs in SG are features, then selecting g as another feature is not able to
improve the overall filtering power any more, i.e. identifying less candidates. The
helpfulness of a subgraph is quantified as follows, called significance.

Feature set On the basis of the analysis of the filtering power of frequent subgraphs,
we define the significance metric δ w.r.t. g as δ(g) = |sup(g)|

|⋃m
i=1 sup(fi)| ,

4 where g is a sub-

graph, and f1, f2, . . . , fm are all the features that contain g. Then, the feature set is
defined to be comprised of all significant frequent subgraphs, i.e. all the frequent sub-
graphs with significance no less than a user-specified minimum significance thresh-
old δmin. Here, the minimum support threshold is set to be 1/|D| when the size of
a subgraph pattern is less than 4, in order to enable all the graphs in D to be sup-
ported probably by some features. It follows that all maximal frequent subgraphs are
selected as features.

3I.e. |supD(g)|. The graph database D is omitted here for ease of presentations, similarly hereinafter.
4If the denominator is 0, the fraction is defined to be equal to a very large number that is always larger
than any δmin.

J Comb Optim (2011) 21: 159–191 175

Among all frequent subgraphs of the graphs in a graph database D, the selecting
of significant frequent subgraphs as features is discussed as follows. For two unse-
lected frequent subgraphs g and g′, such that g � g′, g �= g′ and supD(g) = supD(g′)
(or |supD(g)| = |supD(g′)|), let the data structure F store all the features selected
till now, and all the selected features in F that contain g′ be f1, f2, . . . , fm. Given

δmin, δmin > 1, Case 1, if |sup(g′)|
|⋃m

i=1 sup(fi)| ≥ δmin, then g′ should be added into F before

g being added, because g′ is more helpful than g for filtering; and then g should
not be added into F , because after g′ is added into F , g′ is a feature in F that con-

tains g, and |sup(g)|
|(⋃m

i=1 sup(fi)) ∪ sup(g′)| < δmin. Case 2, otherwise, i.e. |sup(g′)|
|⋃m

i=1 sup(fi)| < δmin,

then |sup(g)|
|⋃m

i=1 sup(fi)| < δmin, thus both g′ and g are not significant and both should not

be added into F . So in any case g should be discarded. In the existing works, the
set CSG of closed frequent subgraphs (Yan and Han 2003) is defined as CSG = {g |
g ∈ FSG and � ∃g′ ∈ FSG s.t. g � g′, g �= g′, sup(g) = sup(g′)}, where FSG is the set
of all frequent subgraphs. Therefore, any significant frequent subgraph selected here
must be a closed frequent subgraph. Please note that closed frequent subgraphs may
be orders of magnitude fewer than all frequent subgraphs in practice (Yan and Han
2003).

Exact algorithm for generating feature set The exact algorithm for generating a
feature set from a database consists of the following two steps. Step 1, mine closed
frequent subgraphs. Step 2, refine subgraphs obtained in Step 1, i.e. eliminate in-
significant frequent subgraphs according to a user-specified δmin, which proceeds in a
level-wise manner from large size to small size. According to depth-first search order
in the mining algorithm, the containment relationship among some closed frequent
subgraphs can be obtained in Step 1, which need not be examined again in Step 2.
Thus, the number of sub-iso testings is reduced in the exact algorithm for feature
generation.

Approximate algorithm for generating feature set The approximate algorithm for
generating a feature set directly mines features instead of refining after mining. Dur-
ing the mining of closed frequent subgraphs, for a pattern g in the space of closed
frequent subgraph patterns in D, if |sup(g)|

|⋃g̃ sup(g̃)| ≥ δmin, where g̃ denotes all the direct

supergraphs of g that are frequent, i.e., the denominator is the cardinality of union
over all the support sets of such g̃, then g is selected as a feature; otherwise, it is
not selected. This condition can be directly embedded in closed frequent subgraph
mining algorithms without extra subgraph isomorphism testings, i.e. only the union
of support sets is additionally computed. Thus, we can fast generate a feature set
without the costly refining step, i.e. Step 2 of the exact algorithm above.

Theorem 3 The feature set generated by the approximate algorithm is a subset of
that generated by the exact algorithm.

Proof For a subgraph g in the space of closed frequent subgraph patterns in D and
any set S of subgraphs, we have |⋃g′ supD(g′)| ≤ |⋃g̃ supD(g̃)|, where g̃ denotes

176 J Comb Optim (2011) 21: 159–191

all the frequent direct supergraphs of g, and g′ denotes all the frequent proper super-
graphs of g that belong to S. Thus, for each subgraph f in the feature set obtained by
using the approximate algorithm, i.e. |supD(f)|

|⋃
f̃

supD(f̃)| ≥ δmin, where f̃ denotes all the fre-

quent direct supergraphs of f , we conclude that |supD(f)|
|⋃m

i=1 supD(fi)| ≥ |supD(f)|
|⋃

f̃
supD(f̃)| ≥ δmin,

where f1, f2, . . . , and fm are all the features obtained by the exact algorithm that
contain f . Then, f must be selected as a feature by the exact algorithm. �

The approximate algorithm is very suitable for the scenarios where closed frequent
subgraphs are of large amount, so as to speed up the process of feature generation. It
shows approximate filtering power in experiments during query processing.

3.3.2 Feature ordering

Although all the features extracted are significant, in the filtering step of query
processing there probably exist unnecessary sub-iso testings from features to query
graphs. Appropriately ordering features could reduce the number of such unneces-
sary sub-iso testings. For example, consider two features f1 and f2, s.t. supD(f1) ⊇
supD(f2). For a query graph q , if f1 �� q , all the graphs in supD(f1) can be imme-
diately filtered out, and then, f2 need not be examined because no matter whether it
is contained by q or not we cannot filter out any other graphs by supD(f2). Thus one
subgraph isomorphism testing from a feature to the query graph is saved. Conversely,
2 sub-iso testings have to be performed with no saving. The above example shows
that the order on the feature set can influence the overall cost of query processing.

In the following discussion, D is a graph database and F is a feature set of D. For
∀k, 1 ≤ k ≤ |F |, supD(fk) is denoted by Ak indiscriminatingly. Please note that D is
omitted in the remainder of the subsection for simplicity.

Let h : 2F → [0,1] be a function, where h(F ′) is equal to the joint probability
that all the features in F ′ are subgraphs of a given query graph, where F ′ ⊆ F . Let
g : 	 × F → [0,1] be a function, where 	 is the set of all the orders defined on F ;
and g(≺, f ′

t) = 1 − h({f ′
k | f ′

k ∈ F, sup(f ′
k) ⊇ sup(f ′

t), k < t}), where ≺ is an order
on F , i.e. 〈f ′

1, f
′
2, . . . , f

′|F |〉. Thus, the problem of determining the optimal order on a
feature set can be defined as follows.

Input: a graph database D, a feature set F of D, and a function g : 	 × F →
[0,1], where 	 is the set of all the orders defined on F .

Output: an order ≺ on F , i.e. 〈f ′
1, f

′
2, . . . , f

′|F |〉, where for 1 ≤ k ≤ |F |, f ′
k ∈ F .

Objective: Maximize
∑|F |

k=1 g(·, f ′
k).

Given a query graph q , the objective
∑|F |

k=1 g(·, f ′
k) is the expected number of

sub-iso testings that can be saved compared to testing one by one (i.e., |F |) when
sub-iso testings from all the features in F to q are performed during the filtering step
of query processing. The following theorem is presented to expose the case in which
the maximum objective can be obtained.

Theorem 4 An order ≺∗ on F is optimal, if and only if, for any two features fi and
fj in F , fi is before fj according to ≺∗ if sup(fi) ⊃ sup(fj).

J Comb Optim (2011) 21: 159–191 177

Proof (sketch) Necessity: the necessity is proved by contradiction. Let ≺∗ be an op-
timal order on F , i.e. 〈f ′

1, f
′
2, . . . , f

′|F |〉, such that
∑|F |

k=1 g(·, f ′
k) is maximized, where

f ′
k ∈ F for 1 ≤ k ≤ |F |. Suppose that there exist two features f ′

a and f ′
b in F , such

that sup(f ′
a) ⊂ sup(f ′

b) and f ′
a is before f ′

b i.e. a < b. Let all the features that are be-
fore f ′

a and are supergraphs of f ′
b be f ′

c1
, . . . , f ′

cm
, where c1 < · · · < cm < a. If there

exist such features, we denote f ′
c1

by f ′
x ; otherwise, we denote f ′

a by f ′
x . We denote

f ′
b by f ′

y . Then, we construct another order ≺′′ on F based on ≺∗ by appropriately
moving features f ′

x, f
′
x+1, . . . , f

′
y−1, f

′
y in the way given in the next paragraph and

retaining the other features’ positions; and we claim that ≺′′ is a better order than ≺∗
in terms of the objective. Thus, a contradiction is obtained.

On the basis of ≺∗, i.e. 〈f ′
1, f

′
2, . . . , f

′|F |〉, the order ≺′′ is constructed as fol-
lows. Step 1. The positions of features f ′

1, f
′
2, . . . , f

′
x−1, f

′
y+1, f

′
y+2, . . . , f

′|F | are not
changed. Step 2. Features f ′

x, f
′
x+1, . . . , f

′
y−1, f

′
y are rearranged by bubble sort in

non-ascending order of supports. The order ≺′′ is derived from ≺∗ after the above
two steps being performed. Please note that during the bubble sort, for two neigh-
boring features f ′

r and f ′
r+1, if |sup(f ′

r)| < |sup(f ′
r+1)| then we swap f ′

r and f ′
r+1;

otherwise, we do not swap.
Sufficiency: let ≺̃ be an order on F such that for ∀fi, fj ∈ F , fi is before fj

if sup(fi) ⊃ sup(fj). For ∀fi ∈ F , all the features with support sets being proper
supersets of sup(fi) must be before fi according to ≺̃. Thus, it follows that for
∀fi ∈ F , {f | f ∈ F, sup(f) ⊃ sup(fi), f is before fi according to ≺̃} = {f |
f ∈ F, sup(f) ⊃ sup(fi)}. In general, without specifying query graphs, it is assumed
that the features with the same support set influence the function of h(·) identically.
Thus, all orders on the set of the features with the same support set affect the objective
identically. Then, for ∀fi ∈ F , {f | f ∈ F, sup(f) ⊇ sup(fi), f is before fi accord-
ing to ≺̃} = {f | f ∈ F, sup(f) ⊇ sup(fi)}, i.e., g(≺̃, fi) = max≺{g(≺, fi)}. There-
fore,

∑|F |
k=1 g(≺̃, fk) = max≺{∑|F |

k=1 g(≺, fk)}, i.e., ≺̃ is an optimal order on F . �

Feature ordering The algorithm for ordering features is arranging features in non-
ascending order in terms of their supports, which derives an optimal order.

3.3.3 Index structures

The index structures, consisting of all features with an optimal order, include CR-
Graph and FGPForest.

CRGraph The CRGraph index structure is a directed acyclic graph (DAG). Given
a graph database D, the feature set F of D and an optimal order ≺ on F , for two
features f1, f2 ∈ F , if supD(f1) ⊃ supD(f2) then we say supD(f1) direct contains
supD(f2). This direct containment relationship between the support sets of feature
classes defines a partial order relation. Then, the support sets of features can be
conceptually organized into a lattice, which is represented by a DAG with vertices
representing corresponding features and edges representing the direct containment
relationship. The DAG is the CRGraph index structure.

178 J Comb Optim (2011) 21: 159–191

CRGraph construction The algorithm for CRGraph construction, called BuildCR-
Graph, is shown in Algorithm 2, which is divided into two parts: ordering features
(Line 1), and creating vertices and directed edges to obtain the CRGraph structure
(Lines 2–11). For each feature f there is a data structure CLOSf used to record all
the features f ′ s.t. supD(f) ⊃ supD(f ′). During the loop in Lines 2–11, the data
structure TransCLOS is used to record all the features f ′ s.t. supD(f) ⊃ supD(f ′)
and (∃f ′′ ∈ F)(supD(f) ⊃ supD(f ′′) and supD(f ′′) ⊃ supD(f ′)).

Algorithm 2: BuildCRGraph(F)
Input: a feature set F , where for ∀f ∈ F , sup(f) is attached
Output: the CRGraph
sort F in non-ascending order in terms of support (please note that the obtained1

optimal order on F is denoted by ≺) ;
for each f ∈ F in descending order of ≺ do2

create a vertex vf of CRGraph which corresponds to f ;3

CLOSf ← ∅ ;4

TransCLOS ← ∅ ;5

for each f ′ s.t. f ′ ∈ F and f ′ �∈ TransCLOS in ascending order of ≺ do6

if sup(f) ⊃ sup(f ′) then7

create a directed edge of CRGraph from vf to vf ′ ;8

CLOSf ← CLOSf ∪ {f ′} ;9

TransCLOS ← TransCLOS ∪ CLOSf ;10

CLOSf ← CLOSf ∪ TransCLOS ;11

return the constructed CRGraph ;12

Complexity analysis of CRGraph construction The time complexity of feature or-
dering is O(|F | × log(|F |) × |D|) with no extra space usage. The time complexity
of producing vertices and directed edges is O(|F |2 × |D|) and the space usage is
O(|F |2) for CLOS(f) and O(|F |) for TransCLOS. In sum, the time complexity of
CRGraph construction is O(|F |2 × |D|) and the space complexity is O(|F |2).

FGPForest The FGPForest index structure is a forest, comprised of GPTrees of dis-
joint sets of features. The GPTrees in a FGPForest are ordered. Obviously, in a FGP-
Forest some but not all common prefixes of GVCodes of all features are combined.
Please note that an optimal order on the feature set is preserved in its FGPForest.

FGPForest Construction The algorithm for FGPForest construction, called Build-
FGPForest, is shown in Algorithm 3. It invokes the function ConsTrie defined in
GPTree construction (Algorithm 1). With CRGraph as input, all the features in F are
organized to a forest comprised of multiple GPTrees of disjoint sets of F .

J Comb Optim (2011) 21: 159–191 179

Algorithm 3: BuildFGPForest(F , CRGraph, σ I
FT)

Input: a feature set F , the CRGraph of F , and a minimum threshold σ I
FT

Output: the FGPForest
initialize FGPForest by the empty forest, CRGraph′ ← CRGraph ;1

obtain the set FFIG of frequent induced subgraphs of the features (or graphs) in2

F , where the minimum induced-support is σ I
FT ;

while there exist at least one vertex in CRGraph′ do3

FreeF ← the set of all the features of the vertices in Vno-in-edge, where4

Vno-in-edge is the set of all the vertices in CRGraph′ which have no incoming
edges ;
FGPTree ← ConsTrie(FreeF, σ I

FT , FFIG) ;5

append FGPTree to FGPForest with making FGPTree the last tree in the6

ordered forest FGPForest ;
remove all the vertices in Vno-in-edge and all the outcoming edges of each7

vertex in Vno-in-edge from CRGraph′ ;
return FGPForest ;8

Complexity analysis of FGPForest construction In all the iterations of the loop
in Line 3, the time complexity of Lines 4 and 7 is O(|F | + |ECRGraph|) in to-
tal and the space complexity is O(|F |); and the time complexity of Line 5 is
O(|F | × |FFIG| + ∑

f ∈F (|Vf | + |Ef |)) in total and the space complexity is

O(
∑

fig∈FFIG(|supI
F (fig)| × |Vfig|) + |F | × |FFIG| + ∑

f ∈F (|Vf | + |Ef |)) if vseqs
are stored in memory. The time complexity of Line 5 is O(|F | + |ECRGraph|) and the
space complexity is O(|F | + |ECRGraph|). In sum, the time complexity of FGPFor-
est construction is O(|ECRGraph| + |F | × |FFIG| + ∑

f ∈F (|Vf | + |Ef |)) apart from
the time taken by frequent induced subgraph mining on F , and the space complexity
is O(

∑
fig∈FFIG(|supI

F (fig)| × |Vfig|) + |ECRGraph| + |F | × |FFIG| + ∑
f ∈F (|Vf | +

|Ef |)) apart from the space consumed by frequent induced subgraph mining on F if
vseqs are stored in memory.

3.3.4 Discussions on graph database organizing and index creating

The preprocessing in the proposed method includes organizing a given graph data-
base into a GPTree, and creating the indices of CRGraph and FGPForest. The process
of the specified frequent induced subgraph mining on databases for GPTree construc-
tion is merged with the specified closed frequent subgraph mining for feature gener-
ation in the following manner. In the progress of the integrated mining, if a search
branch can be pruned by the conditions of one mining algorithm, the other mining
algorithm is solely conducted along the branch; otherwise, the examinations for these
two mining schemes are both conducted in the original way.

In summary, the preprocessing in the proposed method consists of two steps.
A GPTree of a given graph database is constructed first. Simultaneously, the initial
feature set is generated. Then, feature selection from the initial feature set is carried
out if the exact algorithm for feature generation is adopted, and the initial feature set

180 J Comb Optim (2011) 21: 159–191

is just the outputted feature set if the approximate method for feature generation is
adopted; features are ordered and the indices of CRGraph and FGPForest are created.

3.4 Query processing

3.4.1 Subgraph isomorphism testing from multiple to one

Given a GPTree of a set of small graphs, and one large graph, for each small graph,
in order to determine whether it is a subgraph of the large graph, an algorithm is
proposed in this section.

The algorithm for testing subgraph isomorphism from multiple small graphs or-
ganized in a GPTree to one large graph, called GPTreeTest, is shown in Algorithm 4,
which outputs the set of IDs of the graphs in the GPTree that are contained by the
large graph.

In Algorithm 4, the data structure psi, used to record a partial sub-iso, stores a
sequence of some vertices of the large graph q . For each node n in T , n.GID is
the set of graph-IDs attached to n, and n.flag,n.alOut,n.ableChildCnt are three data
structures (or variables), which are initialized by ‘true’, ‘false’, and the number of n’s
children, respectively, in the algorithm. The initialized values of these three variables
represent that n should be examined subsequently, that n.GID has not been outputted
yet, and the number of the children of n whose flag variable is ‘true’, respectively.
CHILD(n) is the set of n’s children in T . The core of the algorithm is the recursion
procedure SubIsoOnGPTree, which takes a node n of a GPTree and a partial sub-iso
psi as input. In the beginning of the procedure, if n is associated with some graph-IDs
that have not been outputted, they should be outputted (Lines 4–6). Then, if all the
children of n need not be examined, the procedure will directly return (Lines 7–9).
In the next step, the procedure pre-order traverses the subtree rooted by each child
cn of n such that cn.flag is ‘true’ (Lines 10–12). The data structure MV records all
the matched vertices in q , such that, each of these vertices and all the vertices in psi
constitute a subgraph isomorphism from the graph corresponding to the path from
nroot to cn to q . For each matched vertex v in MV , the corresponding partial sub-iso
psi′ is constructed by concatenating v to psi (Line 14), and then SubIsoOnGPTree is
performed from the child cn recursively (Line 15). Once a contained graph is found, it
is recorded and will not be considered again during subsequent searching (Lines 4–9
and 16–21). At last, IDSET is the set of IDs of the graphs in T that are contained
by q .

Let the path from the node nanc to the node ndesc in a GPTree be denoted by
nanc � ndesc. In the GPTree T , the graph corresponding to nroot � n, denoted by
gnroot�n, is an induced subgraph of the graphs that correspond to the paths from nroot
to any descendants of n. Thus, in the course of the algorithm, psi records a partial
subgraph isomorphism from gnroot�n to q (in particular, the vertex of gnroot�n that
corresponds to ni in T is mapped to the ith vertex in psi), and gnroot�n represents an
induced subgraph of multiple graphs accommodated in T . Therefore, when sub-iso
testing from multiple graphs in a GPTree to a large graph is performed, their common
induced subgraphs corresponding to one path of the GPTree are examined together,
and are only tested once altogether. In this way, a number of sub-iso testings are
saved.

J Comb Optim (2011) 21: 159–191 181

Algorithm 4: GPTreeTest(T , q)
Input: a GPTree T with root nroot, and a large graph q = (Vq,Eq,Σq, lq)

Output: IDSET
IDSET ← ∅ ;1

SubIsoOnGPTree(nroot, ∅) ;2

return IDSET ;3

Procedure:SubIsoOnGPTree(n, psi)
if n.GID �= ∅ and n.alOut = false then4

IDSET ← IDSET ∪ n.GID ;5

n.alOut ← true ;6

if n.ableChildCnt = 0 then7

n.flag ← false ;8

return ;9

for each cn ∈ CHILD(n) do10

if cn.flag = false then11

continue ;12

let cn be denoted by 〈(j, lj), (i1, li1, li1j), . . . , (im, lim, limj)〉,13

MV = {v | v ∈ Vq − {u|u is in psi}, lq(v) = lj , and for
∀k(1 ≤ k ≤ m), (psi[ik], v) ∈ Eq and lq(psi[ik], v) = likj },
where psi[ik] is the ik-th vertex in psi
for each v ∈ MV do

compute psi′ by concatenating v to psi ;14

SubIsoOnGPTree(cn, psi′) ;15

if cn.flag = false then16

n.ableChildCnt– ;17

if n.ableChildCnt = 0 then18

n.flag ← false ;19

return;20

break ;21

Example 3 Figure 7 shows the state search space, in which each state5 represents a
recursion of the procedure SubIsoOnGPTree, when sub-iso testing from all the graphs
in the GPTree in Fig. 4 to q2 in Fig. 5 is performed using GPTreeTest. For the state
t associated with (n6, u4), the recursion path in the GPTree is 〈n1, n2, n3, n6〉 and
psi = 〈u1, u2, u3, u4〉. This psi in t (and this recursion path) represents a subgraph
isomorphism (or injective function) from the graph corresponding to the GVCode
〈n1, n2, n3, n6〉 to q2, where ni is defined in Fig. 4b. The rectangle in a state t rep-
resents that some graphs contained by q2 are found in t . In particular, in the state
with (n6, u4), g2 is found; in the state with (n5, u4), g1 is found. Thus, the algorithm
returns {g1, g2} as result finally.

5Each state is associated with a node-vertex pair, in which the first component is the current node n and
the second component is the last vertex in psi.

182 J Comb Optim (2011) 21: 159–191

Fig. 7 A search space

Response time analysis of GPTreeTest One of the determinants of the cost of sub-
iso testing from a small graph to a large graph is the number of vertices of the small
graph sg, denoted by |Vsg|, since a subgraph isomorphism must involve all the ver-
tices in Vsg. Hence, here the response time of GPTreeTest is analyzed in terms of the
number of sub-iso testings with different values of |Vsg| explicitly. Let m be the num-
ber of the graphs in a given GPTree. For each j , let mj be the number of the graphs
in the GPTree that share the same common prefix, and let cplenj be the number of
the codes (or vertices) in this common prefix (or common induced subgraph), where∑k

j=1 mj = m. As analyzed in Sect. 3.2.2, we have that for the mj graphs with the
same cplenj -length common prefix, the testing time saved by this common prefix is
T (cplenj) × (mj − 1), where T (cplenj) is the average time taken by sub-iso testing
from the graph corresponding to the common prefix to a query. Therefore, the search-
ing time in GPTreeTest is at most m×TisoEach −∑k

j=1 T (cplenj)× (mj − 1), where
TisoEach is the average time taken by individually sub-iso testing from each of the m

graphs in the GPTree to a query. In addition, by utilizing consecutive storage such as
arrays, the overall time taken by initializing the variables .flag, .alOut, .ableChildCnt
for all the nodes in the GPTree is O(

∑
g in the GPTree |Vg|), which is small compared

to the above searching time.

3.4.2 On-line redundant features shedding

As analyzed in Sect. 3.3.2, although all features are significant, in the filtering step of
query processing there probably exist unnecessary sub-iso testings from features to
query graphs. For a query graph, such features that sub-iso testings from them to the
query graph is unnecessary are called on-line redundant features.

On-line redundant features shedding The algorithm for on-line redundant features
shedding, called RedunFShedding, is shown in Algorithm 5. Features are examined
in an optimal order preserved in the ordered FGPForest (Line 4). During the process,
if a feature f is not contained in q , the features corresponding to all the descendants
of vf in CRGraph are added to the redundant feature set SF, where vf is the vertex
in CRGraph corresponding to f . After that, all the features in SF need not be tested
for sub-iso from them to q (Lines 6–12). In the next iteration of Line 5, the next
feature that is not in SF is examined. This process repeats until all features are either
examined or shed. Thus, the eventual shed feature set SF records all the features that
are avoided from subgraph isomorphism testing.

J Comb Optim (2011) 21: 159–191 183

Algorithm 5: RedunFShedding(CRGraph, FGPForest, q)
Input: the indices of CRGraph and FGPForest, and a query graph q

Output: the shed feature set SF
SF ← ∅ ;1

for each vertex v in CRGraph do2

v.expanded ← false;3

for the next tree FGPTree of FGPForest do4

for each feature f organized in FGPTree do5

let vf be the vertex in CRGraph corresponding to f

if f �∈ SF then6

if f �� q then7

add the features corresponding to all the children of vf in8

CRGraph to SF ;
vf .expanded ← true ;9

else
if vf .expanded = false then10

add the features corresponding to all the children of vf in11

CRGraph to SF ;
vf .expanded ← true ;12

return SF ;13

Complexity analysis of redundant features shedding RedunFShedding involves two
kinds of operations, the one is sub-iso testing from features to q , and the other is
children enumeration from CRGraph. Let TisoF be the average time cost of sub-iso
testings from each feature to q . Because of GPTreeTest being used to test sub-iso
(Line 7), which will be mentioned in Sect. 3.4.3, the time cost of all sub-iso testings
is no more than (|F |− |SF|)×TisoF . The time complexity of children enumeration is
O(|F |+|ECRGraph|), where ECRGraph is the edge set of the CRGraph. In addition, the
space usage of children enumeration is O(|F |) for SF and Θ(|VCRGraph|) = O(|F |)
for the .expanded component of each vertex in CRGraph, where VCRGraph is the ver-
tex set of the CRGraph. In sum, the time complexity of RedunFShedding apart from
sub-iso testings on FGPForest is O(|F | + |ECRGraph|), and the space complexity is
O(|F |).

3.4.3 Integrated query processing method

Given a graph database D, the compact organization GPTree of D and the indices
of CRGraph and FGPForest, which implies the feature set F , are constructed in the
preprocessing phase. The integrated method for processing a supergraph query with
query graph q consists of two steps. In the first filtering step of query processing,
the candidate answer set is identified, i.e. Cq = D − ⋃

f ��q,f ∈F supD(f). The filter-
ing step integrates on-line shedding redundant features and performing GPTreeTest
on each GPTree in FGPForest in turn for testing sub-iso from features to q (or for
Line 7 in Algorithm 5). Please note that once a feature is known to be in the shed

184 J Comb Optim (2011) 21: 159–191

feature set SF, it will be not examined when further performing GPTreeTest on GP-
Trees in FGPForest for processing this query. In the second verification step of query
processing, GPTreeTest is performed on the subtree of GPTree of D which only ac-
commodates all the graphs in Cq , and the answer to this query, Answer(q), is obtained
at last.

3.4.4 Discussions

The support for external storage is briefly discussed as follows. A disk-based strategy
is that the trie of the GPTree of a graph database is not physically implemented,
but only the order, in the GVCode, on the vertex set of each graph is recorded.
When processing queries, only candidate graphs are retrieved and the trie of GP-
Tree of these candidates is built on-the-fly. If the GPTree of all candidates can-
not be accommodated in memory, then one portion after another of candidates are
loaded, and GPTreeTest is invoked multiple times to finish the verification step. In
this way, the time usage of BuildGPTree apart from Tig-m mentioned in Sect. 3.2.2 is
O(|D| × |FIG| + ∑

g∈D |Vg|) operations in memory and the disk-IOs involving stor-
ing the vertex sequences of all the graphs in D; the memory usage apart from Sig-m
is O

(∑
ig∈FIG(|supI

D(ig)| × |Vig|) + |D| × |FIG|) if vseqs are stored in memory.
Next, the maintenance of the organization and the indices is discussed in two cases

of insertion and deletion. For insertion, when a new graph g is to be inserted into D,
Step 1, for the GPTree of D, GVCode(g) is generated with its codes in an arbitrary
order, and the generated GVCode(g) is inserted into the GPTree subsequently; Step 2,
GPTreeTest on FGPForest is performed to update the support sets of all the features
contained by g; Step 3, for CRGraph, each directed edge is removed if its origin end-
point corresponds to a feature that is not contained in g and its destination endpoint
corresponds to a feature that is contained in g. Step 2 and Step 3 are conducted to-
gether. For Deletion, when a graph g is to be deleted from D by its graph-ID, the path
which only relates to g is directly deleted from the GPTree of D.

4 Experimental evaluation

In this section, the experimental studies that validate the effectiveness and efficiency
of the proposed method, named GPTree&CRGraph (or GPT&CRG), is presented, by
comparing it with the state-of-the-art method, cIndex (Chen et al. 2007). Two kinds of
datasets are used: the real dataset that is used in the evaluation of cIndex and a series
of synthetic datasets. All the experiments are performed on an Intel PIV3.0 GHz PC
with 2 GB RAM, running Redhat Linux 8.0. Both cIndex and GPTree&CRGraph are
implemented in C and compiled by gcc compiler (-O2).

4.1 AIDS antiviral screen dataset

The experiments described in this subsection use the AIDS antiviral screen dataset
(AIDS for short). It contains more than 40,000 chemical compounds and is available
publicly. The parameters in cIndex and GPTree&CRGraph are set as follows. (1) In

J Comb Optim (2011) 21: 159–191 185

Table 1 Preprocessing performance for AIDS

GPTree&CRGraph(E:0.8) GPTree&CRGraph(A:0.9) cIndex

minsup time (s) |F | time (s) |F | time (s) |F |

0.10 26.0 104 25.1 123 465.9 16

0.05 45.8 276 47.3 339 1242.0 15

0.01 611.2 1688 74.9 1981 7095.2 14

cIndex, we randomly draw 10,000 graphs to form a dataset W , then divide W to a
query log set L (8000) and a testing query set Q (2000). Contrast subgraphs are mined
with the minimum support σc = 0.05 (this value relates to the minimum average can-
didate set size compared to σc = 0.1 and 0.01. The smallest number of queries in
each leaf for cIndex-TopDown, min_size, is still set 100. (2) In GPTree&CRGraph,
query logs are not used, and the query set is the same as that in cIndex; the mini-
mum significance threshold δE

min is 1/0.8 for the exact method and δA
min is 1/0.9 for

the approximate method; and the minimum support threshold σ I
T for the GPTree of

the given database and that for index construction σF are both 0.05, and that for
FGPForest, σ I

FT , is 0.1. In order to build a graph database, we apply frequent sub-
graph mining on AIDS and retain all the subgraphs whose support ranges from 0.5%
to 10%, which is denoted by Dinit. The test dataset consists of 10,000 graphs, denoted
by D10,000, which are randomly selected from Dinit. Among all the three particular
methods of cIndex, cIndex-Basic is selected for the comparison of index construction
because it yields the fewest features, and cIndex-TopDown for the comparison of
query processing due to its greatest efficiency in query processing rather than cIndex-
BottomUp and cIndex-Basic.

The index size and the construction time of cIndex-Basic and those of GP-
Tree&CRGraph are first tested. As mentioned in Sect. 3.3.4, the GPTree construction
and the proposed indices construction are integrated. So we compare the overall pre-
processing time of GPTree&CRGraph with the time for index construction of cIndex
(or cIndex-Basic). Table 1 reports the construction time and the number of features
on varying σF (= σ I

T) or σc.
As shown in Table 1, the time of constructing GPTree and indices in the proposed

method for AIDS is one to two orders of magnitude smaller than that of cIndex. It
is because cIndex needs to examine the containment relationship between the initial
feature set F0 (Chen et al. 2007) and query logs, which is very costly. Although
the number of the features in the proposed method is more than that in cIndex, but
hundreds of features would not occupy too much space. More importantly, we next
show that query performance by these features is more efficient than cIndex. The
reason is that features are significant and the on-line redundant features shedding can
eliminate redundant features in the filtering step, besides the advantage of the trie
structure of GPTree.

To evaluate the query performance of the proposed method, the 2000 queries are
divided into eight bins: [0, 10), [10, 20), [20, 30), [30, 40), [40, 100), [100, 200), [200,
500), [500,∞), based on the size of the average query answer set, i.e. the number
of the graphs in the given graph database that are contained by the query. Figure 8

186 J Comb Optim (2011) 21: 159–191

Fig. 8 Query processing time

Fig. 9 Candidate answer set
size

reports that the average query processing time using the proposed method is about
one order of magnitude faster than that using cIndex-TopDown. The main reason
is that the compact organization of databases could save more underlying subgraph
isomorphism testings.

To verify that the generated features are significant, the candidate answer set size
is focused in Fig. 9. X axis shows the average answer set size while Y axis shows
the average candidate set size, i.e. |Cq |. This figure shows that the candidate set size
by the features generated in GPTree&CRGraph is several times smaller than that by
cIndex-TopDown. Since δA

min(1/0.9) < δE
min(1/0.8), the feature set generated by the

approximate method shows a very close filtering power to that by the exact one.
Next, we assess the effect of δmin in the exact and approximate feature generation

methods on the feature set size |F | and the candidate set size |Cq | in Fig. 10. In this
experiment, the query set [20, 30) is processed on the dataset D10,000. It shows that
the average size of the candidate set gradually grows when δmin increases. Simultane-
ously, the feature set size decreases. In practice, we have to make a trade-off between
the performance and the space cost. Moreover, the filtering power of the feature set
generated by the approximate method is close to that of exact significant feature set
for the same δmin, and they could be approximately equal to each other by decreasing
δA

min slightly. This experiment validates the effectiveness of the approximate method
for feature generation, whereas its index construction time is much less than the exact
method, shown in Table 1.

To evaluate scalability, four datasets is generated by randomly selecting graphs
from Dinit, whose sizes range from 10,000 to 70,000. Q is chosen as the query set.

J Comb Optim (2011) 21: 159–191 187

Fig. 10 Sensitivity of δmin

Fig. 11 Query processing time
by varying database sizes

Fig. 12 Candidate answer set
size by varying database sizes

Figures 11 and 12 report the query processing time and average candidate set size on
the databases of various sizes. It shows the high scalability of GPTree&CRGraph.

4.2 Synthetic dataset

In this subsection, the performance studies on synthetic datasets are conducted. The
broadly used graph generator (Kuramochi and Karypis 2001) is used to generate
datasets, which relates to six parameters here: D (number of graphs), T (average size
of graphs), L (number of seed small graphs), I (average size of seed small graphs), V
(number of vertex labels) and S (allowing overlaps of seed small graphs in generated
graphs). It generates graphs as follows. First a set of seed small graphs are generated
randomly, whose sizes are determined by a Poisson distribution with mean I . Then

188 J Comb Optim (2011) 21: 159–191

Fig. 13 Query processing time
on synthetic databases

Fig. 14 Candidate answer set
size on synthetic databases

seed graphs are randomly selected and inserted into a graph one by one until the
graph reaches its expected size T .

For conducting experiments on the datasets with different characteristics from the
real one, we individually generate database and queries. The database generated is
D10kT 15L100I5V 5S, and query sets are D10kT 40L100I5V 5S, D10kT 45L100-
I5V 5S, D10kT 50L100I5V 5S, D10kT 55L100I5V 5S and D10kT 60L100I5V 5S.
D10kT 15L100I5V 5S denotes a set of 10,000 graphs such that the average size of
these graphs is 15 and there are 5 vertex labels altogether. Each query set is divided
into a query log set (8000) and a testing query set (2000). The parameters are set as
follow. σc = 0.10, min_size = 100; in the setting of GPTree&CRGraph, the testing
query set is the same, and δE

min = 1/0.7, δA
min = 1/0.8, σ I

T = σF = σ I
FT = 0.10.

Figure 13 reports that the average query processing time is much less than that
using cIndex-TopDown. Figure 14 shows that the candidate set size obtained by us-
ing the features generated in GPTree&CRGraph is still much smaller than that by
cIndex-TopDown. Other synthetic datasets with different parameters were also tested.
Similar results were observed in these experiments.

5 Related work

There have been a number of studies on subgraph query processing. To overcome
the difficulty of answering arbitrary in structure graph queries, some filtering-and-

J Comb Optim (2011) 21: 159–191 189

verification based approaches are proposed to upgrade performance. In these ap-
proaches, the first kind (Yan et al. 2005; Zhang et al. 2007; Cheng et al. 2007;
Zhao et al. 2007; Shang et al. 2008) applies data mining techniques as building blocks
for extracting features, and the second kind (Shasha et al. 2002; He and Singh 2006;
Williams et al. 2007; Jiang et al. 2007; Zou et al. 2008) uses other strategy to con-
struct a feature set. However, most of these methods target subgraph query, and they
are either inapplicable to or inefficient for the supergraph query. In addition, although
Closure-tree (He and Singh 2006) also arranges graphs into hierarchical indexing
structures, which is used to remove false positives and construct a candidate answer
set in the filtering step, the proposed method GPTree is different from Closure-tree
and applicable to all the cases of subgraph isomorphism testing from multiple graphs
to one graph, including accelerating the computing of a candidate set and the verifi-
cation of each candidate for the studied query processing problem.

As graphs are prevalently used in various domains, a basic problem among these
applications is comparing graphs such as determining the subgraph relationship be-
tween two graphs. This problem may be associated with different names, such as
graph matching, (sub)graph isomorphism testing, and so on. It recently obtains a
growing attention (Fortin 1996; Bunke 2000; Conte et al. 2004). For subgraph rela-
tionship decision, the Ullmann’s algorithm (Ullmann 1976) performs a tree search in
terms of vertices, and in each substep refines the future vertex pairs on the basis of
the current partial matching. A recent algorithm VF2 (Cordella et al. 2004), whose
refinement heuristic is faster to compute, achieves in many cases significant improve-
ment over other algorithms. These algorithms all aim at finding sub-iso from one to
one, thus they are inefficient for the problem studied in this paper.

For the detection of subgraph isomorphisms from many graphs to one, Messmer
and Bunke (1999) builds a decision tree in the preprocessing phase and results in
a quadratic time w.r.t. the input graph size, but with exponential space requirement
and preprocessing time, which leads to its inapplicability to large-size databases. An
inspiring decomposition-based method (Messmer and Bunke 2000) results in a time
sublinear w.r.t. the number of the graphs in a database. However, owing to the under-
lying decomposition strategy, the output of the method are all subgraph isomorphisms
from each graph in the answer set to the query graph, which is unnecessary and time-
consuming for the supergraph query. In the XML context, Gupta and Suciu (2003)
constructs a single deterministic push down automata to generalize and improve tree
pattern matching technique (not for arbitrary in structure graphs) for the specific task
of evaluating XPath queries. Bohannon et al. (2005) lays emphasis on finding XML
schema embeddings by which an instance-level mapping can be automatically de-
rived and it guarantees information preservation w.r.t. an XML query language. It
does not focus on finding schema embeddings from large amounts of source DTD
schemas to a single target DTD in a scalable manner. To the best of our knowledge,
cIndex (Chen et al. 2007) is the only method employing the filtering-and-verification
methodology to process supergraph queries so far. However, there is no algorithm
that exploits the efficient methodology and considers organizing graphs in databases
to upgrade the supergraph query processing performance, which is the emphasis of
this study.

An introduction on graph mining is given in Washio and Motoda (2003). There
has been many methods proposed (Kuramochi and Karypis 2001; Yan and Han 2002;

190 J Comb Optim (2011) 21: 159–191

Borgelt and Berthold 2002; Yan and Han 2003; Wang et al. 2004; Wörlein 2006; Zeng
et al. 2007), which can efficiently obtain (closed) frequent (induced) subgraphs from
a graph database. To decrease the number of frequent subgraphs in a parameterized
way, graph patterns summarization was proposed in Liu et al. (2008). They play an
important role in the preprocessing phase in the paper.

6 Conclusions

In this paper, in order to efficiently answer supergraph queries, a novel compact or-
ganization of a graph database, GPTree, was proposed. Adopting the filtering-and-
verification methodology, two methods for feature generation were presented. Be-
sides the exact significant feature set generation method, an approximate method for
generating significant feature set was proposed. The approximate method could com-
paratively fast generate a feature set. Features are arranged in an optimal order, and
by using the proposed on-line redundant features shedding method, the number of
subgraph isomorphism testings from features to query graphs is reduced. Based on
GPTree, a new algorithm from multiple graphs to one, GPTreeTest, was proposed.
Benefiting from GPTree and the algorithm of GPTreeTest, much less number of
subgraph isomorphism testings need be performed in both the filtering and the ver-
ification steps. Based on all the above techniques, the proposed supergraph query
processing method outperforms the existing counterpart method by one to two orders
of magnitude.

Acknowledgements This work was supported in part by the National Grand Fundamental Research 973
Program of China (Grand No. 006CB303000), the Key Program of National Natural Science Foundation
of China (Grant No. 60533110), and the NSF of China (Grant No. 60773063).

References

Agrafiotis DK, Bandyopadhyay D, Wegner JK, van Vlijmen H (2007) Recent advances in chemoinformat-
ics. J Chem Inf Model 47(4):1279–1293

Bohannon P, Fan W, Flaster M, Narayan PPS (2005) Information preserving XML schema embedding. In:
Proceedings of the international conference on very large data bases, pp 85–96

Borgelt C, Berthold MR (2002) Mining molecular fragments: finding relevant substructures of molecules.
In: Proceedings of the IEEE international conference on data mining, pp 51–58

Bunke H (2000) Graph matching: Theoretical foundations, algorithms, and applications. In: Vision inter-
face, pp 82–88

Burge M, Kropatsch WG (1999) A minimal line property preserving representation of line images. Com-
puting 62(4):355–368

Cai D, Shao Z, He X, Yan X, Han J (2005) Community mining from multi-relational networks. In: Pro-
ceedings of European conference on principles and practice of knowledge discovery in databases,
pp 445–452

Chen C, Yan X, Yu PS, Han J, Zhang D-Q, Gu X (2007) Towards graph containment search and indexing.
In: Proceedings of the international conference on very large data bases, pp 926–937

Cheng J, Ke Y, Ng W, Lu A (2007) Fg-index: towards verification-free query processing on graph data-
bases. In: Proceedings of the ACM SIGMOD international conference on management of data,
pp 857–872

Conte D, Foggia P, Sansone C, Vento M (2004) Thirty years of graph matching in pattern recognition. Int
J Pattern Recognit Artif Intell 18(3):265–298

J Comb Optim (2011) 21: 159–191 191

Cordella LP, Foggia P, Sansone C, Vento M (2000) Fast graph matching for detecting cad image compo-
nents. In: Proceedings of the international conference on pattern recognition, pp 6034–6037

Cordella LP, Foggia P, Sansone C, Vento M (2004) A (sub)graph isomorphism algorithm for matching
large graphs. IEEE Trans Pattern Anal Mach Intell 26(10):1367–1372

Fortin S (1996) The graph isomorphism problem. Technical report, University of Alberta
Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness.

Freeman, New York. ISBN 0-7167-1044-7
Gupta AK, Suciu D (2003) Stream processing of xpath queries with predicates. In: Proceedings of the

ACM SIGMOD international conference on management of data, pp 419–430
He H, Singh AK (2006) Closure-tree: an index structure for graph queries. In: Proceedings of the interna-

tional conference on data engineering, p 38
Jiang H, Wang H, Yu PS, Zhou S (2007) Gstring: a novel approach for efficient search in graph databases.

In: Proceedings of the international conference on data engineering, pp 566–575
Kuramochi M, Karypis G (2001) Frequent subgraph discovery. In: Proceedings of the IEEE international

conference on data mining, pp 313–320
Li X-Y, Wan P-J, Wang Y, Yi C-W (2003) Fault tolerant deployment and topology control in wireless

networks. In: Proceedings of the ACM international symposium on mobile ad hoc networking and
computing, pp 117–128

Liu Y, Li J, Gao H (2008) Summarizing graph patterns. In: Proceedings of the international conference on
data engineering, pp 903–912

Messmer BT, Bunke H (1999) A decision tree approach to graph and subgraph isomorphism detection.
Pattern Recognit 32(12):1979–1998

Messmer BT, Bunke H (2000) Efficient subgraph isomorphism detection: a decomposition approach. IEEE
Trans Knowl Data Eng 12(2):307–323

Petrakis EGM, Faloutsos C (1997) Similarity searching in medical image databases. IEEE Trans Knowl
Data Eng 9(3):435–447

Shang H, Zhang Y, Lin X, Yu JX (2008) Taming verification hardness: an efficient algorithm for testing
subgraph isomorphism. Proc VLDB Endow 1(1):364–375

Shasha D, Wang JT-L, Giugno R (2002) Algorithmics and applications of tree and graph searching. In:
Proceedings of the ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems,
pp 39–52

Ullmann JR (1976) An algorithm for subgraph isomorphism. J ACM 23(1):31–42
Wang C, Wang W, Pei J, Zhu Y, Shi B (2004) Scalable mining of large disk-based graph databases. In:

Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining,
pp 316–325

Washio T, Motoda H (2003) State of the art of graph-based data mining. SIGKDD Explor 5(1):59–68
Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. J Chem Inf Comput Sci

38(6):983–996
Williams DW, Huan J, Wang W (2007) Graph database indexing using structured graph decomposition.

In: Proceedings of the international conference on data engineering, pp 976–985
Wörlein M (2006) Extension and parallelization of a graph-mining-algorithm. Master’s thesis, Friedrich-

Alexander-Universität, Erlangen-Nürnberg
Yan X, Han J (2002) gspan: Graph-based substructure pattern mining. In: Proceedings of the IEEE inter-

national conference on data mining, pp 721–724
Yan X, Han J (2003) Closegraph: mining closed frequent graph patterns. In: Proceedings of the ACM

SIGKDD international conference on knowledge discovery and data mining, pp 286–295
Yan X, Yu PS, Han J (2005) Graph indexing based on discriminative frequent structure analysis. ACM

Trans Database Syst 30(4):960–993
Zeng Z, Wang J, Zhou L, Karypis G (2007) Out-of-core coherent closed quasi-clique mining from large

dense graph databases. ACM Trans Database Syst 32(2):13
Zhang S, Hu M, Yang J (2007) Treepi: a novel graph indexing method. In: Proceedings of the international

conference on data engineering, pp 966–975
Zhao P, Yu JX, Yu PS (2007) Graph indexing: Tree + delta ≥ graph. In: Proceedings of the international

conference on very large data bases, pp 938–949
Zou L, Chen L, Yu JX, Lu Y (2008) A novel spectral coding in a large graph database. In: Proceedings of

the international conference on extending database technology, pp 181–192

	Efficient algorithms for supergraph query processing on graph databases
	Abstract
	Introduction
	Subgraph isomorphism and supergraph query
	Supergraph query processing
	Overview of query processing method
	GPTree of a graph database
	Structure of GPTree
	GPTree

	Algorithm for constructing GPTree
	GPTree construction
	Complexity analysis of GPTree construction

	Indices on graph databases
	Feature generation
	Feature set
	Exact algorithm for generating feature set
	Approximate algorithm for generating feature set

	Feature ordering
	Feature ordering

	Index structures
	CRGraph
	CRGraph construction
	Complexity analysis of CRGraph construction
	FGPForest
	FGPForest Construction
	Complexity analysis of FGPForest construction

	Discussions on graph database organizing and index creating

	Query processing
	Subgraph isomorphism testing from multiple to one
	Response time analysis of GPTreeTest

	On-line redundant features shedding
	On-line redundant features shedding
	Complexity analysis of redundant features shedding

	Integrated query processing method
	Discussions

	Experimental evaluation
	AIDS antiviral screen dataset
	Synthetic dataset

	Related work
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

